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Gauge invariance of the energy shift of a bound electron in an 
electromagnetic field 

Donald H Kobe and Shahram M Golshan 
Department of Physics, North Texas State University, Denton, TX 76203, USA 

Received 17 September 1986 

Abstract. The shift in the energy of a bound electron due to an electromagnetic field is 
shown to be gauge invariant if eigenvalues of the energy operator, which is not in general 
the Hamiltonian, are used. Using eigenvalues of the energy operator, we show by a direct 
calculation that the energy shift in a zero electromagnetic field is zero, even if  the potentials 
are not zero. 

1. Introduction 

For a bound electron in an external electromagnetic field, the energy levels are shifted. 
The energy shift should, of course, be the same regardless of what gauge is chosen for 
the vector and scalar potentials in terms of which the interaction is formulated. This 
paper proves that the energy shift is indeed gauge invariant if eigenvalues of the energy 
operator [l-31, not the Hamiltonian, are used. The eigenvalues of the Hamiltonian 
are shown to be gauge dependent, and so cannot in general be the energy eigenvalues. 
Since the energy operator used here has recently been criticised [4], it is important to 
show that even in static problems it is necessary to make the distinction between the 
Hamiltonian and the energy operator. 

If the electromagnetic field is zero, the energy shift is zero because the zero 
electromagnetic field can be described by zero vector and scalar potentials. If non-zero 
vector and scalar potentials are chosen to describe the zero electromagnetic field [5], 
the energy shift should still be zero by gauge invariance. The explicit formula for the 
energy shift is not, however, obviously zero in this case. It has been conjectured that, 
if the potentials are not zero in a field-free region, an energy shift could be induced 
by these non-zero potentials [6]. If no magnetic flux pierces the electron’s orbit this 
bound-state Aharonov-Bohm effect [7,8] should be zero by gauge invariance. We 
show by a direct calculation that in this case the energy shift does vanish if the energy 
operator, not the Hamiltonian, is used. 

The energy shift is calculated using the energy operator of the electron, which is 
not in general its Hamiltonian [l-31. If the gauge function depends on the time (on 
which it can be chosen to depend even in static problems), the Hamiltonian and the 
energy operator are different. In this case, eigenvalues of the Hamiltonian are gauge 
dependent and so do  not satisfy the requirement of gauge invariance which is required 
for an observable [9, 101. The calculations of this paper vindicate the use of the energy 
operator over the Hamiltonian to determine the energy eigenstates of the system. 

0305-4470/87/ 102813 + 07%02.50 0 1987 IOP Publishing Ltd 2813 



2814 D H Kobe and S M Golshan 

In 0 2 the general formula for the energy shift of an electron in an electromagnetic 
field is determined. When the electromagnetic field is zero, 5 3 shows that the energy 
shift is indeed zero even if non-zero potentials are used. In 0 4 the general expression 
for the energy shift is shown to be gauge invariant. The gauge dependence of the 
Hamiltonian and its eigenvalues is discussed in § 5 .  Finally, the conclusions are given 
in § 6 .  

2. Energy shift in an electromagnetic field 

An electron of charge q and mass m is in a time-dependent electromagnetic field 
E (  r, t )  and B( r, t )  characterised by the vector potential A (  r, t )  and the scalar potential 
4 ( r ,  t ) ,  where 

E = - ~ 4  - a A / a t c  B = V x A .  ( 2 . 1 )  

H ( A ,  4 ) +  = iha+/at. ( 2 . 2 )  

H = H ( A ,  4 )  = ( 2 m ) - ' ( p - q A / c ) ' +  V ( r ) + q 4 ( r ,  t )  ( 2 . 3 )  

The Schrodinger equation for the wavefunction II, of the electron is 

The Hamiltonian in equation ( 2 . 2 )  is 

where p = -ihV is the canonical momentum operator. The (conservative) potential 
energy V (  r )  of the electron can be of gravitational, nuclear or electrostatic origin. The 
scalar potential term q 4 ( r ,  t )  of the time-dependent electromagnetic field is not con- 
servative. 

The energy operator for the electron [ 1-31 

8 = :mu2+ V ( r )  ( 2 . 4 )  

is the sum of the kinetic energy operator and the conservative potential energy V ( r ) .  
The velocity operator v times the mass m is the kinetic momentum 

( 2 . 5 )  
Using equations (2 .4)  and ( 2 . 5 )  we see that the energy operator 8 is related to the 
Hamiltonian H in equation ( 2 . 3 )  by 

%'=H-qrj ( 2 . 6 )  
where 4 = 4 ( r ,  t )  is the scalar potential of the time-dependent electromagnetic field. 

The eigenenergies of the electron with potential energy V (  r )  in the electromagnetic 
field is found from the eigenvalue equation for the energy operator 8 

mu = p - q A / c .  

84, = ( 2 . 7 )  
where E ,  is the eigenenergy and 4, is the energy eigenstate. This eigenvalue problem 
may be difficult to solve in practice, and it may be necessary to use perturbation [ 1 1 3  
or other approximation methods. An explicit expression can be obtained for the energy 
shift. The energy operator 8 in equation ( 2 . 4 )  may be written as 

8=Ho+7r .  (2.8) 

(2.9) 

The perturbation 2r may be written as the sum of two terms 
v= TO)+ V(2J 
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where the first-order term in q is 

'V"")= -(q/2mc)(A - p + p *  A )  

and  the second-order term in q is 

2"" = ( q2/2mc2)A2. 

(2.10) 

(2.11) 

Note that because of equation (2.6) the q 4  term does not appear in equation (2.10). 
The unperturbed Hamiltonian H0 in equation (2.8) is 

(2.12) 

where p is the canonical momentum. The eigenvalue problem for the unperturbed 
Hamiltonian is 

H,, = p 2 / 2 m  + V (  r )  

H o 4 n  = E n 4 n  (2.13) 

where E, is the unperturbed energy and 4,, is the unperturbed energy eigenstate. 
The energy shift which results from the presence of the electromagnetic field can 

be calculated by substituting equation (2.8) into equation (2.7), and  taking the inner 
product with d n  in equation (2.13). We then obtain 

A & n  = E n  -En = ( # n l ' V " + n ) l ( 4 n l + n )  (2.14) 

where the interaction 'V" is given in equation (2.9). The energy shift in equation (2.14) 
may now be calculated from perturbation theory or other approximation. As shown 
in § 4 the energy shift in equation (2.14) is gauge invariant. 

3. Energy shift in zero electromagnetic field 

In  the special case that the electromagnetic field is zero, the energy shift can be 
calculated from equation (2.14). If zero potentials are used, the interaction 2' is zero 
and  the corresponding energy shift is zero. However, non-zero potentials, 

A = - V A  4 = dA/dtc (3.1) 

where A = A(r ,  t )  is an  arbitrary differentiable function, such that V d h l d t  = aVA/a t ,  
can be used to describe the zero electromagnetic field [4]. If equation (3.1) is used in 
equation (2.1) the result is E = 0 and B = 0. 

The energy shift due to the zero electromagnetic field described by the non-zero 
potentials is 

A E n  = ( 4 n  I )/( 4 n  I +n )* (3.2) 

The 'pseudointeraction' [ 121 Yo due to the zero electromagnetic field described by the 
non-zero potentials in equation (3.1) is 

(3.3) -7 - 'V";i+ 2'd" 

7r:' = ( q / 2 mc ) ( V A p t p C A )  

0 -  

where the first-order term in q is 

(3.4) 
from equation (2.10), and  the second-order term in q is 

'V"ai= (q2/2mc2)(VA)' (3.5) 
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from equation (2.11). The eigenfunction +It,, of the energy operator t$ in equation (2.4) 
with A = -VA is 

CLn = exp(-iqA/ hc)4, (3.6) 

where +fl is the eigenstate of Ho in equation (2.13). When equation (3.6) is substituted 
into equation (2.7), the eigenvalue problem reduces to equation (2.13) if E,, = E,,. 
Therefore the energy shift A&,, = E,  -E,, = O  in this case. 

On the other hand, the energy shift A&,, is given by equation (3.2), which becomes 

A&,, = ( 4 n / r / b  exp(-iqA/fic)4n)/(4,1exp(-iqA/hc)4n) (3.7) 
when equation (3.6) is used. This energy shift should, of course, be zero if the energy 
shift is gauge invariant. A direct calculation shows that equation (3.7) is indeed zero. 
The operator Yo exp( -iqA/ hc) can be written as 

Yo exp( -iqA/ hc) = j{ Yo, exp( -iqA/ hc)} +$[ Yo,  exp(-iqA/ hc)] (3.8) 
where {,} is the anticommutator and [,] is the commutator. The commutator in equation 
(3.8) is 

[Yo,  exp(-iqA/hc)] = -(q2/mc2)(VA)’ exp(-iqA/hc) 

= - 2 Y r ’  exp( -iqA/ hc) (3.9) 
from equations (3.4) and (3.5). If equation (3.9) is substituted into equation (3.8), the 
result is 

(3.10) 

when equation (3.3) is used. The numerator of the energy shift in equation (3.7) is 
therefore 

Yo exp( -iqA/ f i c )  = ${ Y r ) ,  exp( -iqA/ hc)} 

(4fllYo exp(- iqN hC)4”) 

= R e ( ~ , ~ c o s ( q A / h c ) Z r ~ ’ ~ , ) - i R e ( ~ , ~ s i n ( q A / h c ) Y ~ ’ ~ , )  (3.11) 

when equation (3.10) and the hermiticity of ‘If;’ are used. 

Re(4,Jcos(qA/hc)Ybl’~,> = ( h / m )  Re(4,lV sin(qA/hc) . p 4 , , )  

The first term on the right-hand side of equation (3.11) can be written as 

= h d’rV sin(qA/hc) .J, , (r) .  (3.12) I 
The probability current density J,, in the state d,, is 

J, , ( r )  = m-’ Re 4:p+,, (3.13) 
which satisfies the equation of continuity [ 131 

V J,, = 0 (3.14) 

for the stationary state I$,, by equation (2.13). Using the vector identity for the 
divergence of a vector times a scalar and the divergence theorem, we can transform 
equation (3.12) into 

Re( 4,, 1 cos( q A/ hc) 2.b’ ’4,,) 

= h f d d .  J , , ( r )  sin(qA/hc)- h d3r sin(qA/hc)V * J , , ( r )  

(3.15) 
s=ax  

= 0. 
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The second term on the right-hand side of equation (3.15) vanishes because of equation 
(3.14). The first term on the right-hand side vanishes because the probability current 
d d .  J,,(r) vanishes for the surface S at infinity, S = dcc. 

In  a similar manner it can be shown that the second term on the right-hand side 
of equation (3.11) is also zero, 

Re(4,1sin(q24/ hc)Y:’9,) 

= - h  $ d ~ ~ J n ( r ) c o s ( q . 4 / h c ) + h  d3rcos(qA/hc)V J,, = O  (3.16) 

where the right-hand side vanishes as in equation (3.15). Thus equation (3.11) vanishes 
because of equations (3.15) and (3.16). Since equation (3.11) is the numerator of the 
energy shift in equation (3.7), we have 

A&,, = O  (3.17) 

for a zero electromagnetic field. The direct calculation shows that for a zero electromag- 
netic field the energy shift is gauge invariant. 

s=ax J 

4. Gauge invariance of the energy shift 

Even when the electromagnetic field is non-zero, the energy shift A&, in equation (2.14) 
is gauge invariant. If we make a transformation on the potentials to a new gauge 

A ’ = A + V A  4‘ = 4 - dA/dtc (4.1 1 

$‘= exp(iqA/hc)$ $A = exp(iqA/hc)$,,. (4.2) 

(4.3) 

the wavefunctions + and $,, must also be transformed 

The gauge transformed energy operator 8’ is [ 1-31 

8’ = (2m)-’(  p - q A ’ / c ) ’ +  V (  r )  = exp(iqA/ hc) 8 exp( -iqA/ hc)  

which is a unitary transformation on equation (2.4). When equation (2.7) is multiplied 
by exp(iqA/ hc) ,  the energy eigenvalue problem in equation (2.7) becomes 

8’*:, = E,*:, (4.4) 
with the same energy eigenvalue E , .  

In the new gauge the energy shift in equation (2.14) becomes 

A&:, =(dJnl~’W(4“l*: , ) .  (4.5) 
The new interaction V is the same as the old interaction Y in equation (2.9) but with 
A replaced by A‘in equations (2.10) and (2.11). The new interaction can be written as 

= 8’ - H,, (4.6) 
where the new energy operator 8’ is given in equation (4.3). Therefore the energy 
shift in equation (4.5) is 

= (4nI( 8’- H ~ ) $ L ) / ( ~ J G L )  
= E,  - E, =A€, ,  (4.7) 

when equations,(4.4), (2.13) and (2.14) are used. Thus when eigenvalues of the energy 
operator are used, the energy shift is gauge invariant. 
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In particular, the result of 5 3 can be understood because a zero electromagnetic 
field can be described equally well by the potentials in equation (3.1) or  by the new 
potentials A ’ = O ,  d’= 0 when equation (3.1) is used in equation (4.1). The energy shift 
in equation (4.5) in the new gauge is obviously A&: = 0 because the interaction 7”; = 0. 
This result agrees with A&,, = O  in equation (3.17). 

5. Gauge dependence of the Hamiltonian 

In this section we show that the Hamiltonian is gauge dependent. The eigenvalue 
problem for the Hamiltonian gives gauge-dependent eigenvalues and  eigenstates. Since 
the energy is an observable it is essential that energy differences be gauge invariant, 
which is guaranteed by using the energy operator. Since the Hamiltonian is gauge 
dependent, it is not in general an observable. Only in certain gauges does the Hamil- 
tonian reduce to the energy operator. 

Under the gauge transformation of equation (4.1) the Schrodinger equation in 
equation (2.2) becomes 

H ( A ‘ ,  4’)J / ’= ihaJ / ‘ /a r  (5.1) 

where the gauge transformed wavefunction 9’ is given in equation (4.2). The new 
gauge transformed Hamiltonian H ’ =  H(A‘, 4‘) is related to the old Hamiltonian 
H = H ( A ,  4)  by [ 1-31 

H ( A ’ ,  4‘) =exp( iqL4/hc)H(A,  4 )  exp(-iqA/hc)-qa,2/dtc. (5.2) 
Because of the last term in equation (5.2) the expectation value of the Hamiltonian is 
not gauge invariant. 

The eigenvalue problem for H is 

HXn = h n x n  (5.3) 
where h, is the eigenvalue and  ,yn is the eigenstate. For the Hamiltonian H ’  in the 
new gauge the eigenvalue problem is 

H’x; = hL,yL. (5.4) 
The new eigenvalue hk it h,, in general, and  the new eigenstate ,yL is not in general 
equal to exp(iqd4/hc),y,. The reason for the gauge dependence of the eigenvalues is 
the last term in equation (5.21, which does not vanish for gauge functions h which 
depend on the time. For the eigenvalues of the Hamiltonian, the shift h,  - E,  is not 
an  energy shift. Because the eigenvalues are gauge dependent h ;  - E, # h, - E,, in 
general. 

In the special case that the temporal gauge 4 ’ = 0  is chosen, the Hamiltonian 
H ’ =  H ( A ’ ,  0) is equal to the energy operator 8’ = H’- q4‘= H ’ .  In this gauge the 
eigenstates and eigenvalues of the Hamiltonian and  energy operator coincide. 

6. Conclusion 

The energy shift of an electron due to an electromagnetic field is proved in this paper 
to be gauge invariant. Eigenvalues of the Hamiltonian are in general gauge dependent, 
since the Hamiltonian is a gauge-dependent operator with a gauge-dependent expecta- 
tion value. It is essential when dealing with gauge functions A which depend on the 
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time to use the energy operator, which has a gauge-invariant expectation value and 
gauge-invariant eigenvalues. It is the energy operator, not in general the Hamiltonian, 
which is the proper quantum mechanical observable when the energy is measured. 
The distinction between the Hamiltonian and  the energy operator resolves the problem 
stated by Kramers [ 141 that '. . . even the extremely important problem of the energy 
[has] not a gauge invariant meaning.' 
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